Weak compactness of wave maps and harmonic maps
نویسندگان
چکیده
منابع مشابه
compactness theorem of n - harmonic maps
For n ≥ 3, let Ω ⊂ R be a bounded smooth domain and N ⊂ R be a compact smooth Riemannian submanifold without boundary. Suppose that {un} ⊂ W (Ω, N) are weak solutions to the perturbed n-harmonic map equation (1.2), satisfying (1.3), and uk → u weakly in W (Ω, N). Then u is an n-harmonic map. In particular, the space of n-harmonic maps is sequentially compact for the weak-W 1,n topology. §
متن کاملHarmonic Maps and Biharmonic Maps
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 1998
ISSN: 0294-1449
DOI: 10.1016/s0294-1449(99)80003-1